PVD Cluster Tool Integrated Measurement Solutions

Efficient Testing Solutions

SURAGUS GmbH

Sensors and Instruments for Non-Contact Electrical Characterization by High-frequency Eddy Current Technology

2010

Founded in Dresden with research and manufacturing facilities in a high-tech innovation hub in Germany

100

"100 Eyes of Argus" on surfaces and thin films

> SURface ArGUS (Surface Guard)

2000

1500+ units successfully installed in production lines and measurement labs across the globe

50

~50 vibrant employees form the multicultural (7 nationals), multilingual (8 languages) and diverse workforce

1 Testing Technology

High frequency eddy current sensors for material and thin-film characterization

How does Eddy Current Testing Work?

Technology

Relies on non-contact current induction and electromagnetic field measurement

Characteristics

▶ High sample rate, high sensitivity, non-contact, but limited to conductive materials

Wide frequency range for high sensitivity

Comparison of Electrical Testing Methods

4-point-probe testing

- Contact / Contact quality influences measurement
- Single point and mapping solutions
- Possible damage to sensitive layers
- Single point sheet resistance testing only
- Wearing of probe with time
- ► No measurement of encapsulated films

- Non-contact & real-time, no wearing
- **No harm** or artifacts to sensitive films
- Encapsulated films & multilayer systems
- Best usage for touch-sensitive layers

Non-contact eddy current testing by EddyCus®

► **High accuracy** without influence of contact resistance

High resolution mapping, inline measurement for process control

Main Advantages of Eddy Current Inspection

Single and Multilayer Systems

Versatile processing conditions

In-vacuo Ex-vacuo Cold / Hot High repeatability and long-term stability

Sample rate for Wafer and layers testing

1,000's measurements/sec

Automation-ready, Easy integration into tools

Measurement Modes and Layer Stacks

Layer Characterization

Single layer system

Multi layer system

SURAGUS GmbH | Efficient Testing Solutions | www.suragus.com

Conductive layer [p,t]

Non-conductive substrate [t]

R ₁ layer 1	Coating top			
R ₂ layer 2	Conductive substrate			
R ₃ layer 3	Coating bottom			

Applications Relying on Conductive Materials

Processing of Conductive Materials

Layer Deposition

- ▶ PVD, CVD, ALD
- Plating
- ► Epitaxy
- Wet deposition slot die, doctor blade, spray coating etc.

Layer Modification

- Drying, Sintering
- Annealing / Tempering
- Doping, Implantation

Layer Removal

- Etching
- Polishing, Planarization (CMP)
- ► Lift-off
- Scribing

General Testing Types For Metrology

Portable Testing

Single Point Measurement

Mapping Solutions

Sheet Resistance C.3-50 7.66 Ready Cherry[]					
Measure	Set 6 121020				
End	Ref				

1						
2.35	1.73	1.84	1.89	1.79	2.01	3.48
1.68	1.13	1.20	1.23	1.17	1.19	1.95
1.62	1.14	1.21	1.25	1.15	1.16	1.94
1.65	1.17	1.26	1.35	1.20	1.21	1.94
1.71	1.14	1.21	1.24	1.16	1.19	1.99
1.76	1.14	1.19	1.20	1.15	1.22	2.14
4.20	2.01	2.13	2.00	1.96	2.34	4.24

Inline / Tool Integrated

11/07/2023 | 9

Repeatability and Stability

Low Ohm

Long-time stability (8 hours)

July 11, 2023 | 10

Inline Processing

Batch Processing

Sensor Integration – Cluster Deposition Tool

Denotes Eddy Current Metrology

Benefits of Process-near Sensor Integration

- Instantaneous measurement in non-contact mode
 - Eliminate time-consuming, quality-impairing contact-based measurement
 - ► High-speed measurements with no contact to layers
 - ► Higher wafer yield and higher wafer throughput
- Increase system up-time
 - Higher throughput to customer
 - ► Reduce tool CoO
 - Reduce coating cost per wafer
- ► In-chamber testing
 - Quick decisions on process optimization
 - Improve process parameters live
 - Better device performance and improved yield

Higher throughput and higher yield through electrical characterization of wafers and layers

Sensor Integration - Metallization Coater

XXS Sensor for Hot Environment

- Minimized footprint
- Separated probe and preamplifier

Setup in Demonstration Chamber

FEP LOGO

Sensor Integration - Optical Coater

Sensor Integration – Inline Wafer Coater

► Inline horizontal testing

- Measurement during substrate rotation
- Sheet resistance logging over time

Sensor pair in test chamber Sheet resistance measurement Metal thickness measurement

▶ In-situ measurement during metal deposition (Ti, Cu, Al, Ag, Au...)

Endura 5500 Integration

Standard AMAT CHAMBER 5

No CHAMBER 5

SURAGUS MEASUREMENT CHAMBER

Installation in PVD Cluster Tool

Transparent Window

Sensor Integration Top Side

In-Chamber Wafer Monitoring

View 1

View 2

Results

Repeatability Measurements

Results

Target Life Affects The Deposition Profile

170

11/07/2023 | 23

Results

Wafer to Wafer and Chamber to Chamber Effects

